Bioadsorção de cromo total com tanino imobilizado de queñua (Polylepis incana) em soluções aquosas
DOI:
https://doi.org/10.35622/Palavras-chave:
adsorção, biossorção, cromo, metais pesados, tratamento de águas residuaisResumo
Os resíduos industriais gerados por curtumes que contêm metais pesados, como Cr(VI) e cromo total, representam graves riscos tanto para o meio ambiente quanto para a saúde pública, devido à sua elevada toxicidade, capacidade mutagênica e potencial carcinogênico. O objetivo deste estudo foi analisar a capacidade de biossorção dos íons de Cr(VI) e de cromo total em soluções aquosas utilizando tanino imobilizado extraído da casca de queñua (Polylepis incana). A metodologia consistiu na obtenção do extrato tânico da casca de queñua e, em seguida, na sua polimerização com formaldeído a 37% para a obtenção do tanino imobilizado. A caracterização do tanino imobilizado foi realizada por espectroscopia no infravermelho (IR), na qual foram identificados grupos funcionais capazes de adsorver o cromo total. A cinética do cromo total ajustou-se melhor ao modelo cinético de pseudo-segunda ordem, no qual qe = 5.568 mg/g indica a quantidade de cromo adsorvida por grama de bioadsorvente em equilíbrio, e k2 = 0.335 g/(mg·min) está associado à taxa global de biossorção; o coeficiente de correlação R2 = 0.9995 indica o melhor ajuste. Conclui-se que o processo de biossorção com tanino imobilizado tem capacidade de adsorver os íons Cr(VI) e cromo total.
Referências
Aguilar-López, J., Jaén-Jiménez, J. C., Vargas-Abarca, A. S., Jiménez-Bonilla, P., Vega-Guzmán, I., Herrera-Núñez, J., … Soto-Fallas, R. M. (2012). Extracción y evaluación de taninos condensados a partir de la corteza de once especies maderables de Costa Rica. Revista Tecnología en Marcha, 25(4), 15–22. https://doi.org/10.18845/tm.v25i4.615
Alvares Rodrigues, L., Koibuchi Sakane, K., Nunes Simonetti, E. A., & Patrocínio Thim, G. (2015). Cr Total removal in aqueous solution by PHENOTAN AP based tannin gel (TFC). Journal of Environmental Chemical Engineering, 3(2), 725–733. https://doi.org/10.1016/j.jece.2015.04.006
Ampiaw, R. E., & Lee, W. (2020). Persimmon tannins as biosorbents for precious and heavy metal adsorption in wastewater: a review. International Journal of Environmental Science and Technology, 17(8), 3835–3846. https://doi.org/10.1007/s13762-020-02748-3
Auad, P., Spier, F., & Gutterres, M. (2020). Vegetable tannin composition and its association with the leather tanning effect. Chemical Engineering Communications, 207(5), 722–732. https://doi.org/10.1080/00986445.2019.1618843
Batool, F., Mohyuddin, A., Amjad, A., ul Hassan, A., Nadeem, S., Javed, M., Hafiz Dzarfan Othman, M., Wayne Chew, K., Rauf, A., & Kurniawan, T. A. (2023). Removal of Cd(II) and Pb(II) from synthetic wastewater using Rosa damascena waste as a biosorbent: An insight into adsorption mechanisms, kinetics, and thermodynamic studies. Chemical Engineering Science, 280, 119072. https://doi.org/10.1016/j.ces.2023.119072
Chabaane, L., Tahiri, S., Albizane, A., Krati, M. El, Cervera, M. L., & de la Guardia, M. (2011). Immobilization of vegetable tannins on tannery chrome shavings and their use for the removal of hexavalent chromium from contaminated water. Chemical Engineering Journal, 174(1), 310–317. https://doi.org/10.1016/J.CEJ.2011.09.037
Cheng, C., Jia, M., Cui, L., Li, Y., Xu, L., & Jin, X. (2022). Adsorption of Cr(VI) ion on tannic acid/graphene oxide composite aerogel: kinetics, equilibrium, and thermodynamics studies. Biomass Conversion and Biorefinery, 12(9), 3875–3885. https://doi.org/10.1007/s13399-020-00899-4
Chu, K. H., & Hashim, M. A. (2007). Copper biosorption on immobilized seaweed biomass: Column breakthrough characteristics. Journal of Environmental Sciences, 19(8), 928–932. https://doi.org/10.1016/S1001-0742(07)60153-3
Cuetocue Petins, M. M., Sarria Villa, R. A., Gallo Corredor, J. A., & Benítez Benitez, R. (2020). Optimización del proceso de obtención de un adsorbente natural a partir de corteza de pino. Revista ION, 33(2), 61–70. https://doi.org/10.18273/revion.v33n2-2020005
Cuetocue Petins, M. M., Sarria-Villa, R. A., Benítez Benítez, R., & Gallo Corredor, J. A. (2021). Chemical modified tannins from Pinus patula bark for selective biosorption of gold in aqueous media. Journal of Environmental Chemical Engineering, 9(5), 106162. https://doi.org/10.1016/j.jece.2021.106162
Cui, J., Wang, Z., Liu, F., Dai, P., Chen, R., & Zhou, H. (2013). Preparation of persimmon tannins immobilized on collagen adsorbent and research on its adsorption to Cr(VI). Materials Science Forum, 743–744, 523–530. https://doi.org/10.4028/wws.scientific.net/msf.743-744.523
Fei, Y., & Hu, Y. H. (2023). Recent progress in removal of heavy metals from wastewater: A comprehensive review. Chemosphere, 335, 139077. https://doi.org/10.1016/j.chemosphere.2023.139077
Ho, Y. S., & McKay, G. (2003). Sorption of dyes and copper ions onto biosorbents. Process Biochemistry, 38(7), 1047–1061. https://doi.org/10.1016/S0032-9592(02)00239-X
Kim, H., Kim, K., Chang, Y., Lee, S., & Yang, J. (2012). Heavy metal removal from aqueous solution by tannins immobilized on collagen. Desalination and Water Treatment, 48(1–3), 1–8. https://doi.org/10.1080/19443994.2012.698517
Kim, Y., & Nakano, Y. (2005). Adsorption mechanism of palladium by redox within condensed-tannin gel. Water Research, 39(7), 1324–1330. https://doi.org/10.1016/j.watres.2004.12.036
Li, W., Tang, Y., Zeng, Y., Tong, Z., Liang, D., & Cui, W. (2012). Adsorption behavior of Cr(VI) ions on tannin-immobilized activated clay. Chemical Engineering Journal, 193, 88-95. https://doi.org/10.1016/J.CEJ.2012.03.084
Madala, S., Nadavala, S. K., Vudagandla, S., Boddu, V. M., & Abburi, K. (2017). Equilibrium, kinetics and thermodynamics of Cadmium (II) biosorption on to composite chitosan biosorbent. Arabian Journal of Chemistry, 10, S1883–S1893. https://doi.org/10.1016/j.arabjc.2013.07.017
Meethale Kunnambath, P., & Thirumalaisamy, S. (2015). Characterization and utilization of tannin extract for the selective adsorption of Ni (II) ions from water. Journal of Chemistry, 2015(1), 498359. https://doi.org/10.1155/2015/498359
Netzahuatl, A. (2009). Selección y caracterización de un biomaterial capaz de remover cromo hexavalente y cromo total de soluciones acuosas [Tesis doctoral, Instituto Politécnico Nacional]. Repositorio Institucional. http://tesis.ipn.mx/xmlui/handle/123456789/6210
Pérez Antolinez, L. L., Paz Astudillo, I. C., Sandoval Aldana, A. P., y Peñaloza Atuesta, G. C. (2020). Uso de cáscara de cacao (Theobroma cacao) para la remoción de cromo en solución acuosa. Revista EIA, 17(34), 1–13. https://doi.org/10.24050/reia.v17i34.1393
Revellame, E. D., Fortela, D. L., Sharp, W., Hernandez, R., & Zappi, M. E. (2020). Adsorption kinetic modeling using pseudo-first order and pseudo-second order rate laws: A review. Cleaner Engineering and Technology, 1, 100032. https://doi.org/10.1016/j.clet.2020.100032
Rodríguez Yupanqui, M., & Quezada Alvarez, M. A. (2020). Remoción de cromo en efluente de curtiembre por consorcio de levaduras del género Saccharomyces y Pichia. Ucv-Scientia, 11(2), 81–91. https://doi.org/10.18050/ucvs.v11i2.2587
Sadegh, N., Haddadi, H., Sadegh, F., & Asfaram, A. (2023). Recent advances and perspectives of tannin-based adsorbents for wastewater pollutants elimination: A review. Environmental Nanotechnology, Monitoring and Management, 19, 100763. https://doi.org/10.1016/j.enmm.2022.100763
Sánchez-Martín, J., Beltrán-Heredia, J., & Gibello-Pérez, P. (2011). Adsorbent biopolymers from tannin extracts for water treatment. Chemical Engineering Journal, 168(3), 1241-1247. https://doi.org/10.1016/j.cej.2011.02.022
Schiewer, S., & Volesky, B. (2000). Biosorption processes for heavy metal removal. In D. R. Lovley (Ed.), Environmental microbe-metal interactions (pp. 329–362). ASM Press. https://doi.org/10.1128/9781555818098.ch14
Xu, Q., Wang, Y., Jin, L., Wang, Y., & Qin, M. (2017). Adsorption of Cu (II), Pb (II) and Cr(VI) from aqueous solutions using black wattle tannin-immobilized nanocellulose. Journal of Hazardous Materials, 339, 91–99. https://doi.org/10.1016/J.JHAZMAT.2017.06.005
Yahya, M. D., Abubakar, H., Obayomi, K. S., Iyaka, Y. A., & Suleiman, B. (2020). Simultaneous and continuous biosorption of Cr and Cu (II) ions from industrial tannery effluent using almond shell in a fixed bed column. Results in Engineering, 6, 100113. https://doi.org/10.1016/j.rineng.2020.100113
Zhang, R., & Tian, Y. (2020). Characteristics of natural biopolymers and their derivative as sorbents for chromium adsorption: a review. Journal of Leather Science and Engineering, 2(1), 1-15. https://doi.org/10.1186/s42825-020-00038-9
Zhang, X., Ma, J., Zou, B., Ran, L., Zhu, L., Zhang, H., Ye, Z., & Zhou, L. (2022). Synthesis of a novel bis Schiff base chelating resin for adsorption of heavy metal ions and catalytic reduction of 4-NP. Reactive and Functional Polymers, 180, 105409. https://doi.org/10.1016/j.reactfunctpolym.2022.105409
Downloads
Publicado
Edição
Seção
Licença
Copyright (c) 2026 Higinio Zuñiga, Roxana Medina (Autor/a)

Este trabalho está licenciado sob uma licença Creative Commons Attribution 4.0 International License.





