Total chromium bioadsorption using immobilized queñua (Polylepis incana) tannin in aqueous solutions
DOI:
https://doi.org/10.35622/Keywords:
adsorption, biosorption, chromium, heavy metals, wastewater treatmentAbstract
Industrial wastes generated by tanneries that contain heavy metals such as Cr(VI) and total chromium pose serious risks to both the environment and public health due to their high toxicity, mutagenic capacity, and carcinogenic potential. This study aimed to analyze the biosorption capacity of Cr(VI) and total chromium ions from aqueous solutions using immobilized tannin extracted from queñua (Polylepis incana) bark. The methodology involved obtaining a tannin extract from queñua bark and subsequently polymerizing it with 37% formaldehyde to produce the immobilized tannin. The immobilized tannin was characterized by infrared spectroscopy (IR), where functional groups capable of adsorbing total chromium were identified. Total chromium kinetics were best fitted by the pseudo-second-order kinetic model, in which qe = 5.568 mg/g represents the amount of chromium adsorbed per gram of bioadsorbent at equilibrium, and k2 = 0.335 g/(mg·min) is associated with the overall biosorption rate; the correlation coefficient R2 = 0.9995 indicates the best fit. It is concluded that the biosorption process using immobilized tannin is capable of adsorbing Cr(VI) and total chromium ions.
References
Aguilar-López, J., Jaén-Jiménez, J. C., Vargas-Abarca, A. S., Jiménez-Bonilla, P., Vega-Guzmán, I., Herrera-Núñez, J., … Soto-Fallas, R. M. (2012). Extracción y evaluación de taninos condensados a partir de la corteza de once especies maderables de Costa Rica. Revista Tecnología en Marcha, 25(4), 15–22. https://doi.org/10.18845/tm.v25i4.615
Alvares Rodrigues, L., Koibuchi Sakane, K., Nunes Simonetti, E. A., & Patrocínio Thim, G. (2015). Cr Total removal in aqueous solution by PHENOTAN AP based tannin gel (TFC). Journal of Environmental Chemical Engineering, 3(2), 725–733. https://doi.org/10.1016/j.jece.2015.04.006
Ampiaw, R. E., & Lee, W. (2020). Persimmon tannins as biosorbents for precious and heavy metal adsorption in wastewater: a review. International Journal of Environmental Science and Technology, 17(8), 3835–3846. https://doi.org/10.1007/s13762-020-02748-3
Auad, P., Spier, F., & Gutterres, M. (2020). Vegetable tannin composition and its association with the leather tanning effect. Chemical Engineering Communications, 207(5), 722–732. https://doi.org/10.1080/00986445.2019.1618843
Batool, F., Mohyuddin, A., Amjad, A., ul Hassan, A., Nadeem, S., Javed, M., Hafiz Dzarfan Othman, M., Wayne Chew, K., Rauf, A., & Kurniawan, T. A. (2023). Removal of Cd(II) and Pb(II) from synthetic wastewater using Rosa damascena waste as a biosorbent: An insight into adsorption mechanisms, kinetics, and thermodynamic studies. Chemical Engineering Science, 280, 119072. https://doi.org/10.1016/j.ces.2023.119072
Chabaane, L., Tahiri, S., Albizane, A., Krati, M. El, Cervera, M. L., & de la Guardia, M. (2011). Immobilization of vegetable tannins on tannery chrome shavings and their use for the removal of hexavalent chromium from contaminated water. Chemical Engineering Journal, 174(1), 310–317. https://doi.org/10.1016/J.CEJ.2011.09.037
Cheng, C., Jia, M., Cui, L., Li, Y., Xu, L., & Jin, X. (2022). Adsorption of Cr(VI) ion on tannic acid/graphene oxide composite aerogel: kinetics, equilibrium, and thermodynamics studies. Biomass Conversion and Biorefinery, 12(9), 3875–3885. https://doi.org/10.1007/s13399-020-00899-4
Chu, K. H., & Hashim, M. A. (2007). Copper biosorption on immobilized seaweed biomass: Column breakthrough characteristics. Journal of Environmental Sciences, 19(8), 928–932. https://doi.org/10.1016/S1001-0742(07)60153-3
Cuetocue Petins, M. M., Sarria Villa, R. A., Gallo Corredor, J. A., & Benítez Benitez, R. (2020). Optimización del proceso de obtención de un adsorbente natural a partir de corteza de pino. Revista ION, 33(2), 61–70. https://doi.org/10.18273/revion.v33n2-2020005
Cuetocue Petins, M. M., Sarria-Villa, R. A., Benítez Benítez, R., & Gallo Corredor, J. A. (2021). Chemical modified tannins from Pinus patula bark for selective biosorption of gold in aqueous media. Journal of Environmental Chemical Engineering, 9(5), 106162. https://doi.org/10.1016/j.jece.2021.106162
Cui, J., Wang, Z., Liu, F., Dai, P., Chen, R., & Zhou, H. (2013). Preparation of persimmon tannins immobilized on collagen adsorbent and research on its adsorption to Cr(VI). Materials Science Forum, 743–744, 523–530. https://doi.org/10.4028/wws.scientific.net/msf.743-744.523
Fei, Y., & Hu, Y. H. (2023). Recent progress in removal of heavy metals from wastewater: A comprehensive review. Chemosphere, 335, 139077. https://doi.org/10.1016/j.chemosphere.2023.139077
Ho, Y. S., & McKay, G. (2003). Sorption of dyes and copper ions onto biosorbents. Process Biochemistry, 38(7), 1047–1061. https://doi.org/10.1016/S0032-9592(02)00239-X
Kim, H., Kim, K., Chang, Y., Lee, S., & Yang, J. (2012). Heavy metal removal from aqueous solution by tannins immobilized on collagen. Desalination and Water Treatment, 48(1–3), 1–8. https://doi.org/10.1080/19443994.2012.698517
Kim, Y., & Nakano, Y. (2005). Adsorption mechanism of palladium by redox within condensed-tannin gel. Water Research, 39(7), 1324–1330. https://doi.org/10.1016/j.watres.2004.12.036
Li, W., Tang, Y., Zeng, Y., Tong, Z., Liang, D., & Cui, W. (2012). Adsorption behavior of Cr(VI) ions on tannin-immobilized activated clay. Chemical Engineering Journal, 193, 88-95. https://doi.org/10.1016/J.CEJ.2012.03.084
Madala, S., Nadavala, S. K., Vudagandla, S., Boddu, V. M., & Abburi, K. (2017). Equilibrium, kinetics and thermodynamics of Cadmium (II) biosorption on to composite chitosan biosorbent. Arabian Journal of Chemistry, 10, S1883–S1893. https://doi.org/10.1016/j.arabjc.2013.07.017
Meethale Kunnambath, P., & Thirumalaisamy, S. (2015). Characterization and utilization of tannin extract for the selective adsorption of Ni (II) ions from water. Journal of Chemistry, 2015(1), 498359. https://doi.org/10.1155/2015/498359
Netzahuatl, A. (2009). Selección y caracterización de un biomaterial capaz de remover cromo hexavalente y cromo total de soluciones acuosas [Tesis doctoral, Instituto Politécnico Nacional]. Repositorio Institucional. http://tesis.ipn.mx/xmlui/handle/123456789/6210
Pérez Antolinez, L. L., Paz Astudillo, I. C., Sandoval Aldana, A. P., y Peñaloza Atuesta, G. C. (2020). Uso de cáscara de cacao (Theobroma cacao) para la remoción de cromo en solución acuosa. Revista EIA, 17(34), 1–13. https://doi.org/10.24050/reia.v17i34.1393
Revellame, E. D., Fortela, D. L., Sharp, W., Hernandez, R., & Zappi, M. E. (2020). Adsorption kinetic modeling using pseudo-first order and pseudo-second order rate laws: A review. Cleaner Engineering and Technology, 1, 100032. https://doi.org/10.1016/j.clet.2020.100032
Rodríguez Yupanqui, M., & Quezada Alvarez, M. A. (2020). Remoción de cromo en efluente de curtiembre por consorcio de levaduras del género Saccharomyces y Pichia. Ucv-Scientia, 11(2), 81–91. https://doi.org/10.18050/ucvs.v11i2.2587
Sadegh, N., Haddadi, H., Sadegh, F., & Asfaram, A. (2023). Recent advances and perspectives of tannin-based adsorbents for wastewater pollutants elimination: A review. Environmental Nanotechnology, Monitoring and Management, 19, 100763. https://doi.org/10.1016/j.enmm.2022.100763
Sánchez-Martín, J., Beltrán-Heredia, J., & Gibello-Pérez, P. (2011). Adsorbent biopolymers from tannin extracts for water treatment. Chemical Engineering Journal, 168(3), 1241-1247. https://doi.org/10.1016/j.cej.2011.02.022
Schiewer, S., & Volesky, B. (2000). Biosorption processes for heavy metal removal. In D. R. Lovley (Ed.), Environmental microbe-metal interactions (pp. 329–362). ASM Press. https://doi.org/10.1128/9781555818098.ch14
Xu, Q., Wang, Y., Jin, L., Wang, Y., & Qin, M. (2017). Adsorption of Cu (II), Pb (II) and Cr(VI) from aqueous solutions using black wattle tannin-immobilized nanocellulose. Journal of Hazardous Materials, 339, 91–99. https://doi.org/10.1016/J.JHAZMAT.2017.06.005
Yahya, M. D., Abubakar, H., Obayomi, K. S., Iyaka, Y. A., & Suleiman, B. (2020). Simultaneous and continuous biosorption of Cr and Cu (II) ions from industrial tannery effluent using almond shell in a fixed bed column. Results in Engineering, 6, 100113. https://doi.org/10.1016/j.rineng.2020.100113
Zhang, R., & Tian, Y. (2020). Characteristics of natural biopolymers and their derivative as sorbents for chromium adsorption: a review. Journal of Leather Science and Engineering, 2(1), 1-15. https://doi.org/10.1186/s42825-020-00038-9
Zhang, X., Ma, J., Zou, B., Ran, L., Zhu, L., Zhang, H., Ye, Z., & Zhou, L. (2022). Synthesis of a novel bis Schiff base chelating resin for adsorption of heavy metal ions and catalytic reduction of 4-NP. Reactive and Functional Polymers, 180, 105409. https://doi.org/10.1016/j.reactfunctpolym.2022.105409
Downloads
Published
Issue
Section
License
Copyright (c) 2026 Higinio Zuñiga, Roxana Medina (Autor/a)

This work is licensed under a Creative Commons Attribution 4.0 International License.





