Edaphic degradation and plant resilience in post-mining calcareous soils within karst landscapes of the Yucatán Peninsula, Mexico.
DOI:
https://doi.org/10.35622/j.rca.2025.03.002Keywords:
soil degradation, plant diversity, , limestone mining, porosity, karst soilsAbstract
Limestone extraction in the Yucatán Peninsula has generated highly disturbed landscapes characterized by soil compaction, reduced porosity, and diminished water retention, affecting plant succession and ecosystem resilience. This study compared edaphic properties and vegetation cover across ten sites in Quintana Roo, five impacted by limestone mining and five controls, distributed along the Reforma Agraria–Puerto Juárez highway. Impacted soils exhibited 25% higher bulk density (1.65 vs. 1.32 g/cm³), 27% lower porosity (38.2% vs. 52.6%), and 36% reduced water retention (21.4% vs. 33.7%) compared to controls. Vegetation cover was 46% lower in impacted areas (42.1% vs. 78.5%), with species richness reduced by more than 50% and diversity values significantly lower (H’ = 1.12 vs. 2.34). These findings confirm functional soil degradation that restricts natural recovery in shallow karst environments, where high permeability and limited horizon formation intensify vulnerability to water stress. Edaphic restoration is recommended through organic amendments, structural soil improvement, and enhanced infiltration, complemented by revegetation with native species adapted to thin soils and low water availability. The results provide empirical evidence to guide ecological restoration programs and sustainable management in tropical mining landscapes of the Yucatán Peninsula, strengthening ecosystem resilience and functional soil recovery.
References
Álvarez-Rivera, O. O., & Estrada-Medina, H. (2024). Distribución geográfica y características del medio físico natural de los ambientes kársticos de México. Acta Universitaria, 34(1), 113–128. https://doi.org/10.15174/au.2024.3840 DOI: https://doi.org/10.15174/au.2024.3840
ASTM International. (2006). Standard Test Method for Permeability of Granular Soils (ASTM D2434).
ASTM International. (2007). Standard Test Method for Particle-Size Analysis of Soils (ASTM D422-63).
ASTM International. (2014). Standard Test Methods for Specific Gravity of Soil Solids by Water Pycnometer (ASTM D854-14).
Bautista, F., Batllori-Sampedro, E., & Palacio-Prieto, J. L. (2019). Soil degradation and karst landscapes in the Yucatán Peninsula. Catena, 182, 104–118. https://doi.org/10.1016/j.catena.2019.104118 DOI: https://doi.org/10.1016/j.catena.2019.104118
Bradshaw, A. D. (1997). Restoration of mined lands—using natural processes. Ecological Engineering, 8(4), 255–269. https://doi.org/10.1016/S0925-8574(97)00022-0 DOI: https://doi.org/10.1016/S0925-8574(97)00022-0
Brand, A., Allen, L., Altman, M., Hlava, M., & Scott, J. (2015). Beyond authorship: Attribution, contribution, collaboration, and credit. Learned Publishing, 28(2), 151–155. https://doi.org/10.1087/20150211 DOI: https://doi.org/10.1087/20150211
Calva-Soto, K., & Pavón, N. P. (2018). La restauración ecológica en México: una disciplina emergente en un país deteriorado. Madera y Bosques, 24(1), e2411635. https://doi.org/10.21829/myb.2018.2411635 DOI: https://doi.org/10.21829/myb.2018.2411135
Chaves, M. M., Maroco, J. P., & Pereira, J. S. (2003). Understanding plant responses to drought—from genes to the whole plant. Functional Plant Biology, 30(3), 239–264. DOI: https://doi.org/10.1071/FP02076
Chazdon, R. L., & Guariguata, M. R. (2016). Natural regeneration as a tool for large-scale forest restoration in the tropics: Prospects and challenges. Biotropica, 48(6), 716–730. https://doi.org/10.1111/btp.12381 DOI: https://doi.org/10.1111/btp.12381
Comisión Nacional de Zonas Áridas. (2024). Programa Nacional para la Conservación de Suelos en Regiones Áridas de México 2024–2030. Gobierno de México. https://www.gob.mx/conaza
Crouzeilles, R., Ferreira, M. S., Chazdon, R. L., & Curran, M. (2021). Ecological outcomes of restoration strategies in tropical forests. Science Advances, 7(3), eabc5433. https://doi.org/10.1126/sciadv.abc5433
Food and Agriculture Organization of the United Nations (FAO). (1998). Guidelines for Soil Description (4th ed.). FAO.
(Food and Agriculture Organization of the United Nations [FAO], 1998). (2021). Status of the World’s Soil Resources 2021: Main Report. FAO.
Ford, D. C., & Williams, P. W. (2013). Karst Hydrogeology and Geomorphology (2nd edition). John Wiley & Sons.
Guerra-Martínez, F., García-Romero, A., & Martínez-Morales, M. A. (2020). Evaluación de la resiliencia ecológica de los bosques tropicales secos: una aproximación multiescalar. Madera y Bosques, 26(3), 301–318. https://doi.org/10.21829/myb.2020.2631983 DOI: https://doi.org/10.21829/myb.2020.2631983
Hernández, A., Pérez, R., & Pérez, E. (2002). Evaluación de la diversidad vegetal en ecosistemas tropicales húmedos del sureste mexicano. Revista Chapingo Serie Ciencias Forestales y Del Ambiente, 8(2), 123–135.
Hernández-Vigoa, G., Cabrera-Dávila, G. C., Izquierdo-Brito, I., Socarrás-Rivero, A. A., & Sánchez-Rendón, J. A. (2018). Indicadores edáficos después de la conversión de un pastizal a sistemas agroecológicos. Pastos y Forrajes, 41(1), 1–15. https://doi.org/10.13140/RG.2.2.34567.89123
Holling, C. S. (1973). Resilience and stability of ecological systems. Annual Review of Ecology and Systematics, 4, 1–23. https://doi.org/10.1146/annurev.es.04.110173.000245 DOI: https://doi.org/10.1146/annurev.es.04.110173.000245
Intergovernmental Panel on Climate Change. (2022). Climate Change 2022: Impacts, Adaptation, and Vulnerability. Contribution of Working Group II to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change (English, Trans.). Cambridge University Press. https://doi.org/10.1017/9781009325844
International Organization for Standardization. (2017). ISO/IEC 17025:2017 – General requirements for the competence of testing and calibration laboratories.
Kozlowski, T. T. (1999). Soil compaction and growth of woody plants. Scandinavian Journal of Forest Research, 14(6), 596–619. DOI: https://doi.org/10.1080/02827589908540825
Magurran, A. E. (2004). Measuring biological diversity. Blackwell Publishing.
Márquez-Huitzil, R., Martínez-Garza, C., & Osorio-Beristain, M. (2022). Restauración ecológica como estrategia para mitigar residuos mineros: propuesta metodológica. Acta Botánica Mexicana, 129, 1–20. https://doi.org/10.21829/abm129.2022.2019 DOI: https://doi.org/10.21829/abm129.2022.2019
Marroquín-Castillo, M., Alanís-Rodríguez, E., Jiménez-Pérez, J., Aguirre-Calderón, O. A., & Collantes-Chávez-Costa, J. (2016). Composición florística y diversidad de un área restaurada post-minería en el matorral espinoso tamaulipeco. Polibotánica, 42, 1–17. https://doi.org/10.18387/polibotanica.42.1 DOI: https://doi.org/10.18387/polibotanica.42.1
Martínez-Hernández, J., Rojas, M., & Torres, C. (2020). Estrategias integrales de restauración ecológica en paisajes mineros tropicales. Revista Colombiana de Ecología Aplicada, 22(1), 45–61. https://doi.org/10.21829/rcea.2020.221045
Moreno-de las Heras, Nicolau, J. M., Merino-Martín, L., & Espigares, T. (2021). Soil and vegetation indicators for assessing ecological restoration success in mining landscapes. Journal of Environmental Management, 290, 112135. https://doi.org/10.1016/j.jenvman.2021.112135 DOI: https://doi.org/10.1016/j.jenvman.2021.112135
on Climate Change (IPCC), I. P. (2022). Climate Change 2022: Impacts, Adaptation, and Vulnerability. Cambridge University Press. https://doi.org/10.1017/9781009325844 DOI: https://doi.org/10.1017/9781009325844
Pérez, J. A., Gómez, M. E., & Torres, R. (2012). Indicadores ecológicos para evaluar la restauración vegetal en ecosistemas tropicales. Revista Colombiana de Ciencias Hortícolas, 6(2), 123–135.
Porta, J., López-Acevedo, M., & Roquero, C. (1994). Edafología para la agricultura y el medio ambiente (2nd ed.). Mundi-Prensa.
Programa de las Naciones Unidas para el Desarrollo [PNUD] & Secretaría de Medio Ambiente y Recursos Naturales [SEMARNAT], 2024). (2024). Programa Nacional de Restauración Ecológica 2024–2030. PNUD-México / SEMARNAT.
Quinto-Mosquera, H., Ayala-Vivas, G., & Gutiérrez-Mosquera, H. (2022). Contenido de nutrientes, acidez y textura del suelo en áreas degradadas por la minería en el Chocó biogeográfico. Revista de La Academia Colombiana de Ciencias Exactas, Físicas y Naturales, 46(179), 514–528. https://doi.org/10.18257/raccefyn.1615 DOI: https://doi.org/10.18257/raccefyn.1615
Santillán-Fernández, A., Vargas-Cabrera, I. I., Pelcastre-Ruiz, L. M., Carrillo-Ávila, E., Alatorre-Cobos, F., & Bautista-Ortega, J. (2021). Resiliencia de la cobertura vegetal en el Suroeste de México ante los efectos del cambio climático. Revista Peruana de Biología, 28(2), e18187. https://doi.org/10.15381/rpb.v28i2.18187 DOI: https://doi.org/10.15381/rpb.v28i2.18187
Suntasig-Negrete, E. R., Carrera-Sánchez, K. M. E., & Manobanda-Pinto, P. M. (2024). Impacto de especies forestales en la restauración de suelos de minería: Revisión sistemática. Agroecología Global, 6(11), e4197. https://doi.org/10.35381/a.g.v6i11.4197 DOI: https://doi.org/10.35381/a.g.v6i11.4197
Sutherland, W. J. (2006). Ecological Census Techniques: A Handbook (2nd ed.). Cambridge University Press. DOI: https://doi.org/10.1017/CBO9780511790508
United Nations (UN). (2015). Sustainable Development Goals (SDGs): 13. Climate Action; 15. Life on Land. https://sdgs.un.org/goals
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Felipe Puc, Daffry Puc

This work is licensed under a Creative Commons Attribution 4.0 International License.





