Determinación de un modelo de regresión lineal múltiple para la predicción de Pol en la caña de azúcar (Saccharum officinarum)

Autores/as

DOI:

https://doi.org/10.35622/

Palabras clave:

agroindustria, calidad, eficiencia, optimización, producción

Resumen

En el proceso de fabricación de azúcar, la Pol en caña es un parámetro de calidad. Sin embargo, existe una problemática en su determinación, ya que está condicionada por la complejidad de cálculo, lo que obligó a realizar esta investigación, para brindar una solución factible, dinámica y económica. El objetivo consistió en elaborar un modelo predictivo que permita predecir la Pol en caña de manera más rápida y de forma sencilla a partir de seis variables independientes: brix en jugo, Pol en jugo, no Pol en jugo, pureza de jugo, fibra en caña y jugo en caña. La investigación fue cuantitativa con diseño explicativo y transversal, donde se disponía de datos recolectados durante la zafra 2023-2024 en un ingenio de la región sur de Guatemala. Se analizaron 23,470 registros para cada variable. Los resultados del análisis de regresión lineal múltiple demostraron que las variables Pol en jugo y fibra en caña inciden directamente en la predicción de Pol en caña al evidenciar coeficientes estandarizados con significancia estadística. Se generó un modelo matemático sólido que atribuye a las variables Pol en jugo y fibra en caña una alta capacidad explicativa. La ecuación de la fórmula es: Pol en caña = 3.642 + (0.80 x Pol en jugo) – (0.242 x fibra en caña). Se concluye que la nueva propuesta para el cálculo de Pol en caña, establece equilibrio entre su simplicidad y precisión, facilitará su aplicación e impactará positivamente en la toma de decisiones en la producción de azúcar.

Biografía del autor/a

  • Flavio Reyes, Universidad Hipócrates

    Ingeniero Agroindustrial por la Universidad de San Carlos de Guatemala, con grado de Doctor en Investigación Social por la Universidad Panamericana, Doctor en Ingeniería Industrial, y un Posdoctorado en Metodología de la Investigación y Producción Científica por el Instituto Universitario de Innovación Ciencia y Tecnología (Perú). Además, posee una Maestría en Ciencias en Administración Agroindustrial por la Universidad del Valle de Guatemala. Se desempeña como Docente en el Centro Universitario del Sur de la Universidad de San Carlos, donde también imparte clases en programas de postgrado, y en la Universidad Rural de Guatemala. Es evaluador externo de la Secretaría de Ciencia y Tecnología de Guatemala, miembro conferencista de la Cámara de Conferencistas, Expositores y Oradores, miembro honorífico del Comité Editorial de la Revista Multidisciplinaria Voces de América y el Caribe (REMUVAC), y miembro activo del Colegio de Ingenieros Químicos de Guatemala y de la Asociación de Técnicos Azucareros de Guatemala.

  • Estuardo Monroy, Universidad Hipócrates

    Ingeniero Químico por la Universidad de San Carlos de Guatemala, con grado de Doctor Honoris Causa por la Universidad Autónoma Andragógica de Miami (Estados Unidos), Posdoctorado en Metodología de la Investigación y Producción Científica por el Instituto Universitario de Innovación Ciencia y Tecnología (Perú) y una Maestría en Biotecnología Industrial y Agroalimentaria por la Universidad de Almería (España). Se ha desempeñado como docente en la Universidad de San Carlos de Guatemala, donde alcanzó la jubilación, y como asesor técnico de ingenios azucareros en Centroamérica. Posee amplias especializaciones en áreas de tecnología y control de calidad en procesos azucareros, así como en estándares internacionales de evaluación de la conformidad, incluyendo ISO 17025, ISO 9001, ISO 22000, ISO 14001, ISO 45001, BPM, HACCP, FSSC 22000, FSPCA, OHSAS 18001, GLOBAL GAP, entre otros, destacando su experiencia en métodos analíticos, calibración y capacitaciones.

Referencias

Bastidas, L., De Sousa, O., Briceño, R., & Hernández, E. (2009). Potencial azucarero y panelero de cinco cultivares de caña de azúcar en el Valle de Santa Cruz de Bucaral, Estado Falcón, Venezuela. Agronomía Tropical, 59(2), 137-148.

Cavalcante, C. S., & de Albuquerque, F. M. (2015). The Sugar Production Process. In F. Santos, A. Borém & C. Caldas (Eds.), Sugarcane: Agricultural Production, Bioenergy and Ethanol (pp. 285–310). Elsevier Inc. https://doi.org/10.1016/B978-0-12-802239-9.00014-1

Chauhan, M. K., Chaudhary, S., & Kumar, S. (2011). Life cycle assessment of sugar industry: A review. Renewable and Sustainable Energy Reviews, 15(7), 3445-3453. https://doi.org/10.1016/j.rser.2011.04.033

Chiatrakul, J., Terdwongworakul, A., Phuangsombut, K., & Phuangsombut, A. (2022). Improved evaluation of commercial cane sugar content in sugarcane stalk using near infrared hyperspectral imaging and stalk axis rotation technique. Biosystems Engineering, 223, 161-173. https://doi.org/10.1016/J.BIOSYSTEMSENG.2022.08.019

Corrêdo, L. P., Wei, M. C., Ferraz, M. N., & Molin, J. P. (2021). Near-infrared spectroscopy as a tool for monitoring the spatial variability of sugarcane quality in the fields. Biosystems Engineering, 206, 150-161. https://doi.org/10.1016/j.biosystemseng.2021.04.001

Da Costa, M. V. A., Fontes, C. H., Carvalho, G., & Júnior, E. C. de M. (2021). Ultrabrix: A device for measuring the soluble solids content in sugarcane. Sustainability, 13(3), 1227. https://doi.org/10.3390/su13031227

De Almeida Silva, M., Véliz, J. G. E., Sartori, M. M. P., & Santos, H. L. (2022). Glyphosate applied at a hormetic dose improves ripening without impairing sugarcane productivity and ratoon sprouting. Science of the Total Environment, 806, 150503. https://doi.org/ 10.1016/j.scitotenv.2021.150503

Díaz Narváez, V. P. (2009). Metodología de la investigación científica y bioestadística para profesionales y estudiantes de las ciencias de la salud (1ª ed.). Editorial Universidad Evangélica de El Salvador.

Drezner, Z., & Turel, O. (2011). Normalizing variables with too-frequent values using a Kolmogorov–Smirnov test: A practical approach. Computers & Industrial Engineering, 61(4), 1240-1244. https://doi.org/10.1016/J.CIE.2011.07.015

Eggleston, G. (2002). Deterioration of cane juice—sources and indicators. Food chemistry, 78(1), 95-103. https://doi.org/10.1016/S0308-8146(01)00390-9

Eggleston, G., & Lima, I. (2015). Sustainability issues and opportunities in the sugar and sugar-bioproduct industries. Sustainability, 7(9), 12209-12235. https://doi.org/10.3390/su70912209

Guimarães, C. C., Assis, C., Simeone, M. L. F., & Sena, M. M. (2016). Use of near-infrared spectroscopy, partial least-squares, and ordered predictors selection to predict four quality parameters of sweet sorghum juice used to produce bioethanol. Energy & fuels, 30(5), 4137-4144. https://doi.org/10.1021/acs.energyfuels.6b00408

Hernández Sampieri, R., Fernández Collado, C., & Baptista Lucio, P. (2014). Metodología de la Investigación (6ª ed.). Mc Graw Hill Education.

Islam, M. S., Pan, Y. B., Lomax, L., & Grisham, M. P. (2021). Identification of quantitative trait loci (QTL) controlling fibre content of sugarcane (Saccharum hybrids spp.). Plant Breeding, 140(2), 360-366. https://doi.org/10.1111/pbr.12912

Jackson, P. A. (2005). Breeding for improved sugar content in sugarcane. Field Crops Research, 92(2-3), 277-290. https://doi.org/10.1016/J.FCR.2005.01.024

Lanza, J. G., Churión, P. C., & Gómez, N. (2016). Comparison between Kjeldahl traditional method and automated Dumas (N cube) method for determination of proteins in several kinds of food. Saber, 28(2), 245-249. https://www.redalyc.org/articulo.oa?id=427749623006

Lejars, C., Auzoux, S., Siegmund, B., & Letourmy, P. (2010). Implementing sugarcane quality-based payment systems using a decision support system. Computers and Electronics in Agriculture, 70(1), 225–233. https://doi.org/10.1016/J.COMPAG.2009.10.010

Li, Z., Gao, X., & Lu, D. (2021). Correlation analysis and statistical assessment of early hydration characteristics and compressive strength for multi-composite cement paste. Construction and Building Materials, 310, 125260. https://doi.org/10.1016/j.conbuildmat.2021.125260

Lumley, T., Diehr, P., Emerson, S., & Chen, L. (2002). The importance of the normality assumption in large public health data sets. Annual review of public health, 23(1), 151-169. https://doi.org/10.1146/annurev.publhealth.23.100901.140546

Phuphaphud, A., Saengprachatanarug, K., Posom, J., Maraphum, K., & Taira, E. (2020). Non-destructive and rapid measurement of sugar content in growing cane stalks for breeding programmes using visible-near infrared spectroscopy. Biosystems Engineering, 197, 76-90. https://doi.org/10.1016/j.biosystemseng.2020.06.012

Plaza-Diaz, J., & Gil, A. (2015). Sucrose: Dietary Importance. In B. Caballero, P. M. Finglas & F. Toldrá (Eds.), Encyclopedia of Food and Health (pp. 199–204). Elsevier Ltd. https://doi.org/10.1016/B978-0-12-384947-2.00668-1

Reyes-Hernández, J., Torres-de los Santos, R., Hernández-Torres, H., Hernández-Robledo, V., Alvarado-Ramírez, E., & Joaquín-Cancino, S. (2022). Rendimiento y calidad de siete variedades de caña de azúcar en El Mante, Tamaulipas. Revista Mexicana De Ciencias Agrícolas, 13(5), 883–892. https://doi.org/10.29312/remexca.v13i5.3232

Robertson, M. J., & Donaldson, R. A. (1998). Changes in the components of cane and sucrose yield in response to drying-off of sugarcane before harvest. Field Crops Research, 55(3), 201–208. https://doi.org/10.1016/S0378-4290(97)00065-8

Sajid, M., Amjid, M., Munir, H., Valipour, M., Rasul, F., Khil, A., Alqahtani, M. D., Ahmad, M., Zulfiqar, U., Iqbal, R., Ali, M. F., & Ibtahaj, I. (2023). Enhancing sugarcane yield and sugar quality through optimal application of polymer-coated single super phosphate and irrigation management. Plants, 12(19), 3432. https://doi.org/10.3390/plants12193432

Salgado, S., Núñez, R., J Peña, J., Etchevers, J. D., Palma, D. J., & Soto, R. M. (2003). Manejo de la fertilización en el rendimiento, calidad del jugo y actividad de invertasas en caña de azúcar. Interciencia, 28(10), 576-580. https://www.redalyc.org/articulo.oa?id=33908503

Sawada, T. (2021). Conditions of the central-limit theorem are rarely satisfied in empirical psychological studies. Frontiers in Psychology, 12, 762418. https://doi.org/10.3389/fpsyg.2021.762418

Schmidt, A. F., & Finan, C. (2018). Linear regression and the normality assumption. Journal of clinical epidemiology, 98, 146-151. https://doi.org/10.1016/j.jclinepi.2017.12.006

Serrano Febles, J., Luis León, M., & Luis Orozco, J. (2022). Análisis de la situación operacional de la etapa de extracción de un Central azucarero. Ingeniería y Desarrollo, 40(2), 114–130. https://doi.org/10.14482/inde.40.02.624.749

Sorol, N., Zossi, S., Juarez, B., Diez, P., Medina, S., & Ruiz, M. (2021). Espectroscopía NIRS en el estudio de calidad de caña de azúcar Parte I: Correlaciones para Brix, Pol, Sacarosa, Glucosa y Fructosa. Revista industrial y agrícola de Tucumán, 98(1), 61-66.

Waclawovsky, A. J., Sato, P. M., Lembke, C. G., Moore, P. H., & Souza, G. M. (2010). Sugarcane for bioenergy production: an assessment of yield and regulation of sucrose content. Plant biotechnology journal, 8(3), 263-276. https://doi.org/10.1111/j.1467-7652.2009.00491.x

Descargas

Publicado

2024-12-20

Número

Sección

Artículos

Cómo citar

Reyes, F., & Monroy, E. (2024). Determinación de un modelo de regresión lineal múltiple para la predicción de Pol en la caña de azúcar (Saccharum officinarum). Revista Ciencia Agraria, 3(2), 38-51. https://doi.org/10.35622/